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Abstract. We study the qualitative change of the dynamics of a generalized two-dimensional
quadratic map under the influence of parametric perturbations which operate in the chaotic
parameter set. It is shown that such perturbations can lead to the suppression of chaos and
appearance of a regular (periodic) behaviour. Numerically we can argue that the suppression of
chaos due to the parametric excitation is caused by a shift of the windows of periodic behaviour
in the bifurcation diagram.

1. Introduction

Dynamical systems which are governed by nonlinear processes show often a very complex
behaviour depending on the values of their control parameters. In addition to steady-
state, periodic and quasi-periodic motions, in certain regions of the parameter space such
systems may possess chaotic motions. If the system exhibits a chaotic attractor then its
deterministic evolution is unpredictable after a certain time. In many practical situations
such a behaviour is undesirable, and should therefore be avoided. However, if it does
occur or it is inevitable then specific techniques can be used to suppress chaos and to bring
the system under consideration into a predictable state. There are two basic approaches
to achieve a stabilization of the dynamics: the forcing method and the parametric one. In
turn, each of them can be realized by including a feedback as a component of the system,
which means taking the current values of dynamical variables into account. If the external
perturbation is realized as a multiplicative action then the system’s parameters are modified,
and that is the reason why this method is called parametric. However, if a term of a certain
form is added to the right-hand side of the system then the forcing method is performed.

If an external multiplicative perturbation depending on the system state is applied to
achieve a required dynamics, then this technique is called parametric feedback controlling.
Recently such a system has been developed to stabilize unstable periodic orbits embedded in
the chaotic attractor as well as to push the system to a special target region [1–3]. Moreover,
it has been verified by numerous experiments (cf [4–7]).

Furthermore, the control strategy can be independent of the present state of the system.
Such a technique is now called non-feedback controlling of chaotic behaviour. The non-
feedback forcing methods are now widely used as a sufficiently simple approach for the
stabilization of a chaotic motion (cf [8–10]). Another way of changing the behaviour of
the system without using feedback is based on a purely multiplicative action which leads
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to a periodic dynamics [11–14]. Such actions should be restricted to those parameter
regions where the behaviour is chaotic. Recently it has been proven for chaotic one-
dimensional quadratic maps and shown for a circle map which exhibits chaotic behaviour
that a parametric perturbation can lead to the appearance of stable periodic orbits [15, 16].
In other words it has been argued that for a certain class of dynamical systems non-feedback
control of chaotic motion is possible. It should be noted that all parameter values included
in the perturbation belong to those parameter sets which ensure a chaotic dynamics [17].

Based on the latter approach the aim of this paper is to extend these results to two-
dimensional maps in order to demonstrate that the concept of non-feedback parametric
controlling (i.e. suppression of chaos by parametric perturbations) works not only for one-
dimensional maps. First we consider a family of two-dimensional maps with externalk-
periodic perturbations in a general form and show that the perturbed map can be subdivided
into k maps which depend on one another only via the initial conditions. Moreover, we
argue that to investigate the phenomenon of chaos suppression it is sufficient to consider
only one of thesek maps. Thus, we expect that in certain quite general cases one can
simplify the study of the perturbed two-dimensional maps. Additionally, on the basis of
numerical computations we conjecture on the mechanism for the suppression of chaos in the
considered two-dimensional maps. To wit, we suppose that a stabilized periodic dynamics
results from a shift of the windows of periodic behaviour in the bifurcation diagram.

2. An analytical approach to investigation of chaotic two-dimensional maps with a
parametric perturbation

In this section we describe quite general properties of a perturbed family of two-dimensional
maps. These properties can help us to investigate numerically the phenomenon of
suppression of chaos performed in section 3. So, let us consider a one-parameter family of
two-dimensional mapsTα : M → M in a general form:

Tα : x 7−→ f(x, α) x ∈ M (1)

where M is a compact invariant set for the mapTα, α is a control parameter, and
f = {fx, fy}, x = {x, y}. Assume thatα belongs to a setA of the admissible parameter
values. Suppose that the map (1) can possess a chaotic dynamics. We denote the set of the
corresponding parameter values byAc ⊂ A.

For the family (1) chaotic dynamics can be established by various methods. One of them
uses a widespread criterion of the positiveness of at least the largest Lyapunov exponent.
Alternatively, it is possible to use the properties of a homoclinic tangency [18], mixing, or
others (see, e.g. [19–21]). However, for our purposes (see section 3) it is sufficient to imply
that map (1) has a positive maximum Lyapunov exponent for all parameter valuesα ∈ Ac.

Let us introduce a parametric perturbation into map (1) as followsG : B → B

G : α 7−→ g(α) α ∈ B ⊂ A. (2)

According to the fact that chaos suppression with the help of a parametric excitation is
considered, letB = Ac. Then the perturbed map is written in the following form

Q : ξ 7−→ q(ξ) ξ ∈ M × Ac (3)

where ξ = (x, α), and q(ξ) = (f(x, α), g(α)). In other words, if the parametric
perturbations (2) are included then the initial map (1) rearranges to map (3) which is
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three-dimensional:

Q :


x 7−→ fx(x, y, α)

y 7−→ fy(x, y, α)

α 7−→ g(α) (x, y) ∈ M, α ∈ Ac.

(4)

Thus, a projection of this map onto the plane(x, y) is map (1) with a perturbation.
Next we consider a transformationG at which map (4) can possess a regular behaviour.

Let us confine our analysis to a periodic perturbation with a periodk : αi+1 = g(αi),
i = 1, 2, . . . , k − 1, α1 = g(αk), αi 6= αj if i 6= j . According to our assumption,αi ∈ Ac,
1 6 i 6 k. Let us denote the set of all the values ofαi corresponding to the regular dynamics
in (4) by Ad . Then the following two problems arise. Is the setAd empty or not? If it is
not empty then what is its Lebesgue measure? These questions are of physical significance
for the following reason. If the Lebesgue measure ofAd is positive then the phenomenon
of chaos suppression is observable in a real physical experiment. In other words, although
owing to different kinds of external noise the parametric valuesαi , i = 1, 2, . . . , k, are
smeared, regular dynamics in map (3) should survive.

The regular behaviour of the mapQ is ensured by stable periodic orbits of finite periods.
In order to demonstrate the presence of order in (3), it is, therefore, necessary to find such
periodic orbits. However, in such studies the following problems have to be taken into
account.

(i) The period of any periodic orbit is multiple to the period of the perturbation:τ = nk,
whereτ is the period of a periodic orbit ofQ, k is the period of the perturbationG, andn

is a positive integer.
(ii) In general, the projection of an orbit of periodτ onto(x, y) is also an orbit of period

τ . However, cases are also possible, where for some points of the mapQ their coordinates
coincide: xi = xk, αi 6= αk, i 6= j , where(xi , αi), (xk, αk) are points of periodic orbits
of Q. Then, we do not getτ points but(τ − l) points in the plane(x, y), wherel is the
number of such coincidences. In particular, atτ = 2 (k = 2) it is possible to observe only
one fixed point in the projection(x, y).

For τ > 2, more complicated (exotic) situations in the projection(x, y) may occur: if
a periodic solution consists of(τ − l) points then there are points in which a representative
point of the mapQ hits several times. Hence, such periodic motion of a two-dimensional
map with a cyclic time-dependent parametric excitation cannot be called periodic orbits in
a usual sense. However, the described cases of projections are degenerate ones; they are
not the typical cases, and such unusual periodic orbits can be met only in specified (chosen
in advance) projections of the perturbed mapQ onto the plane(x, y). Therefore, periodic
orbits with coincident points, as a rule, are not observed in numerical investigations.

Let us consider map (4) in the(x, y) components with a periodic perturbation. For
simplicity let us assume that the mapG performs a double(k = 2) cyclic transformation.
Then it can be written as follows

T =
{

Tα1 : x 7−→ f(x, α1) ≡ f1(x)

Tα2 : x 7−→ f(x, α2) ≡ f2(x).
(5)

This map may be represented via a collection of ‘even’ mapT1 which generates only the
even numbers of iterations and ‘odd’ mapT2 which generates the odd iterations performed
by (5):

T1 : x 7−→ F1(x) ≡ f2(f1(x))

T2 : x 7−→ F2(x) ≡ f1(f2(x)).
(6)
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Thus, the mapT (equation (5)) is a coupling ofT1 and T2 through the initial conditions
x1 = f1(x0).

As noted above, for chaos suppression it is sufficient to find stable periodic orbits in map
(5) and therefore, in map (6). In turn, map (6) consists of two consecutive transformations
T1, T2. Therefore, any periodic orbit of periodτ = 2n (k = 2) of map (6) is composed by
an orbit of periodn of the mapT1 and an orbit of periodn of the mapT2. Moreover, it is
easy to show that if the functionf1(x) or f2(x) is continuous then it is sufficient to find
the stable periodic orbits only for mapT1 or T2 [22]. In addition, it is obvious that if the
perturbed mapT is continuously dependent on the parametersα1, α2 (that is the case for
several problems) then almost all values ofα1, α2 at which the mapT has a stable cycle,
possess a non-zero neighbourhood in which this orbit does not disappear and conserves its
stability. This suggests that the Lebesgue measure of the setAd is positive.

For k-fold (k > 2) cyclic transformation in (2), the arguments mentioned above are
generalized tok maps of the following form

T1 = fk(fk−1(. . .f2(f1(x)) . . .))

T2 = f1(fk(fk−1(. . .f3(f2(x)) . . .)))

...

Tk = fk−1(fk−2(. . .f1(fk(x)) . . .))

(7)

wherefi (x) = f(x, αi), i = 1, 2, . . . , k. Then for continuousfi it is sufficient to find
stable periodic orbits for one of the mapsTi , i = 1, 2, . . . , k.

From these considerations it follows that one has to find a stable periodic orbit for
the mapT to achieve a suppression of chaos. However, this analytical approach does not
show in which way these obtained stable periodic orbits are related to the stable periodic
orbits of the system without parametric perturbation. This problem is difficult to solve
analytically because in most cases one cannot compute explicitly the stable periodic orbits.
Nevertheless this relationship can be explored numerically using a specific example for the
analysis. This numerical investigation, presented in the next section, yields a mechanism
for the appearance of the stable periodic orbits in the perturbed system as well as their
relation to the stable periodic orbits in the periodic windows of the unperturbed system.

3. Numerical study of chaos suppression for a two-dimensional quadratic map

Analysing a concrete system we show numerically that the concept of the suppression
of chaos by means of a cyclic parametric excitation can indeed be realized. According
to section 2 we consider two-parametric transformations operating within the parameter
set corresponding to chaotic motion. On the basis of these numerical computations we
advance the mechanism of the transition from chaotic to regular behaviour. Let us consider
as an example two quadratic one-dimensional maps which are linearly coupled in a two-
dimensional map:

x 7−→ fx(x, y, α, γ ) = 1 − αx2 + γ (y − x)

y 7−→ fy(x, y, α, γ ) = 1 − αy2 + γ (x − y)
(8)

whereα and γ are the control parameters. This system has been studied intensively by
several authors (cf [23, 24]). Therefore, we can omit a lot of details in the bifurcation
behaviour of system (8) and investigate the possibility of the suppression of chaos only.
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3.1. General properties of the map

First of all, note the general properties of map (8). It is not hard to see that it is symmetric
with respect to the change of the variablesx → y. This means that if a point(x̃, ỹ) is
a solution of the fixed point equation then a point(ỹ, x̃) is also a solution of the same
equation. In addition, if an initial point(x0, y0) of map (8) belongs to a linex = y, i.e.
x0 = y0, then all future iterations will also belong to this line. In other words, forx0 = y0

and anyn > 0, xn = yn. Therefore, in this case map (8) degenerates into the well known
one-dimensional quadratic map.

One can easily find fixed points in (8). Due to the symmetry of map (8), two different
cases can be distinguished,x = y andx 6= y. To find period-2 orbits of map (8), we analyse
the equations for the second iteration:

x = 1 − α(1 − αx2 + γ (y − x))2 + γ (x − y)[α(x + y) + 2γ ]

y = 1 − α(1 − αy2 + γ (x − y))2 + γ (y − x)[α(x + y) + 2γ ].
(9)

Once more there are the two different cases withx = y andx 6= y. We only present
the solution for the second case (x 6= y) which is used as a starting point for our numerical
study.

Introducing simplified notation one can obtain the values of the periodic points:

x̃1,2 = p − 2γ

2α
±

√
4δ − (p − 2γ )2 − 2/p

2α

ỹ1,2 = p − 2γ

2α
∓

√
4δ − (p − 2γ )2 − 2/p

2α

(10)

whereδ = α + γ andp denotes one of the following six values:p1 = 1, p2 = −1, p3,4 =
γ − 1

2

√
1 + 4δ± 1

2

√
(2γ − √

1 + 4δ)2 − 4, p5,6 = γ + 1
2

√
1 + 4δ± 1

2

√
(2γ + √

1 + 4δ)2 − 4.
Obviously, for p = p2 the points(x̃1,2, ỹ1,2) are the fixed points. Consequently, for the
otherp = pi , i = 1, 3, 4, 5, 6, there exist pair-wise points which create period-2 orbits in
map (8). The stability of all these fixed points and period-2 orbits can be easily checked
numerically.

3.2. Bifurcations of the unperturbed map

Our numerical treatment of the behaviour of map (8) mainly follows [23]. Figure 1 shows
part of the bifurcation diagram. For the sake of simplicity, it contains only those bifurcation
lines which are taken into account in the following computations. We start our analysis with
the asymmetric period-2 orbit given by (10) forp = p2 = −1. It is stable below the first
bifurcation line in figure 1 (region A). To explain briefly the route to chaos we describe
the bifurcations along a vertical line with fixedγ in figure 1 (i.e.γ = 0.27). The period-2
solution loses its stability at a bifurcation point where two complex conjugate eigenvalues
cross the unit circle and a quasi-periodic motion occurs which corresponds to the existence
of an invariant curve in the state space. This bifurcation is called bifurcation generating
an invariant curve throughout this paper. Note that this kind of bifurcation resembles the
appearance of an invariant curve in the Poincaré map for time-continuous systems which
corresponds to the bifurcation of a periodic orbit into an invariant torus.

In the parameter region studied the quasi-periodic behaviour yields two invariant curves
in the (x, y) plane which are symmetric with respect to the linex = y (region B). An
increase in the parameterα leads to a frequency locking of the ratio 2/5. This frequency-
locking domain (region C) is bounded by two curves which form a well known Arnol’d
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Figure 1. Part of the bifurcation diagram of the linearly coupled quadratic maps in the
neighbourhood of the resonance 2/5: A, period-2 orbit; B, invariant curve; C, resonance 2/5,
period-10 orbit.

tongue. Inside this tongue an orbit of period 10 arises. With a further increase inα this
period-10 orbit loses its stability again via bifurcation generating an invariant curve. The
resulting attractor consists of 10 invariant curves. This scenario is completely repeated until
the phase-locked periodic orbit undergoes a period doubling. Chaotic behaviour appears in
map (8) by means of a period-doubling cascade or the destruction of the invariant curves.

For the sake of simplicity, we keep one of the parameters fixed during further study.
In the model system considered the parameterα describes the nonlinearity of the dynamics
inside each system, whereasγ is a coupling parameter. One can assume thatα is an
intrinsic parameter of the dynamics which is not accessible for control purposes. Therefore,
we assume that only the couplingγ can be varied. But the described method is independent
of that choice.

To obtain chaotic behaviour,α has to be fixed above the last bifurcation line in figure 1.
For our computations we have chosenα = 0.85. To determine a set of parameter valuesγ

with α = constant which corresponds to chaotic behaviour of (8), the Lyapunov exponents
have been calculated (figure 2). Let us denote the set of the parameter valuesγ , for which
the maximum Lyapunov exponent is positive, bySα. This setSα (for a fixed α) has the
same meaning asAc for map (1) in section 2. Additionally, within the range of parameter
values of chaotic behaviour we find several intervals corresponding to periodic orbits with
different periods. These intervals are indicated by a negative maximum Lyapunov exponent.

3.3. Suppression of chaos in the perturbed system

Now, applying the approach developed in the previous section, we introduce a parametric
perturbation of system (8) in the form of a periodic variation (switching) of the coupling
constantγ for α = constant. In other words, we consider ak-periodic transformation
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Figure 2. The maximum Lyapunov exponent versusγ for system (8) (α = 0.85).

γi+1 = g(γi), i = 1, 2, . . . , k − 1, γ1 = g(γk), γi 6= γj if i 6= j . Then, in the simplest case
of a two-periodic variation (2),k = 2, the investigated map (8) is a map consisting oftwo
sequential steps: in the first step the map (8) depends on the parameter valueγ1 and, in the
second step, it depends on the valueγ2. In terms of iterations it looks as follows

x2n+1 = f1,x(x2n, y2n, α, γ1) = 1 − αx2
2n + γ1(y2n − x2n)

y2n+1 = f1,y(x2n, y2n, α, γ1) = 1 − αy2
2n + γ1(x2n − y2n)

x2n+2 = f2,x(x2n+1, y2n+1, α, γ2) = 1 − αx2
2n+1 + γ2(y2n+1 − x2n+1)

y2n+2 = f2,y(x2n+1, y2n+1, α, γ2) = 1 − αy2
2n+1 + γ2(x2n+1 − y2n+1).

(11)

Here, in order to avoid the calculations of the functiong we use explicitlyγ1 andγ2.
Suppose that the parameter values in (11) satisfy the conditionsγ1, γ2 ∈ Sα. Our aim

is to find a certain pairγ1,2 ∈ Sα, α = constant, for which the chaotic dynamics of the
unperturbed map is stabilized and becomes periodic. However, the following points should
be noted. In studies of the perturbed system (11) a problem arises concerning its comparison
with the unperturbed one (8), since system (11) depends on two variable parametersγ1, γ2

(α = constant) while in system (8) the parameterγ is fixed at the same value along all
iterations. For our case one can compare the perturbed system with such an unperturbed
one in which the parameterγ is equal to one of the valuesγ1 or γ2. Let us agree on the
condition that the unperturbed system is the system withγ = γ1. This agreement holds
from now on, and all results should be considered only in this sense.

For a more convenient and instructive study of the arising behaviour, let us introduce a
new parameter0 as the amplitude of the parametric perturbation

0 = γ2 − γ1. (12)

According to the obvious supposition that only small changes in the parameter values are
admissible, the amplitude should vary over a small range only.
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Two methods are possible to study the influence of a periodic parametric excitation.
(i) One can calculate the changes in the bifurcation diagram and the Lyapunov exponents

for an increasing amplitude0 of the cyclic excitation. But it is important to note that in
the case of a uniformly increasing amplitude one has to be careful with the interpretation
of the results because both valuesγ1 and γ2 may not belong to the chaotic regionSα for
every0 as is required.

(ii) The influence of a parametric excitation with a fixed amplitude can be studied. In
this case it is easy to guarantee that bothγ1 andγ2 are elements ofSα.

To ensure that the parametric excitation does not change drastically the whole qualitative
behaviour, let us first look at the bifurcation phenomena of the perturbed system (11) in
comparison to the unperturbed one (8). We indeed find the same route to chaos, but all
occurring bifurcation points are shifted towards other values ofα with increasing amplitude
0. To demonstrate this shift, let us focus on the first bifurcations which are obtained
along the lineγ = 0.27 in figure 1. All three bifurcations are taken into account, namely
the bifurcation, where the period-2 orbit loses its stability and two invariant curves arise,
the point of frequency-locking which is a saddle-node bifurcation for the period-10 orbit
occurring inside the resonance region, and the bifurcation generating 10 invariant curves
from the period-10 orbit. Figure 3 shows that the first two bifurcation points are shifted
towards lower values ofα with increasing amplitude0 whereas the last bifurcation is shifted
towards higher values ofα. This shift of bifurcation points can also be presented by fixing
the amplitude0 of the periodic excitation and comparing the two calculated bifurcation
diagrams (figure 4). Therefore, we can conclude that the small parametric perturbation
yields only a small shift of bifurcations. However, essential changes in the bifurcation
behaviour, such as the appearance of new bifurcations, are not observed. It is important to

Figure 3. The shift of the bifurcation points shown in figure 1 versus the amplitude0 of the
parametric periodic excitation atγ1 = 0.27: broken curve, bifurcation generating two invariant
curves from the period-2 orbit; bold full curve, saddle-node bifurcation of the period-10 orbit;
thin full curve, bifurcation generating 10 invariant curves from the period-10 orbit.
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Figure 4. Bifurcation diagram of the coupled quadratic maps with parametric excitation (11)
in comparison to the unperturbed system (8): bold full curve, without parametric excitation,
0 = 0; thin full curve,0 = 0.01.

note that the direction of this shift is different for each specific bifurcation point in each
model system; it cannot be predicted in advance just by analytical means. In particular,
there is no general relationship between the sign of the amplitude0 and the direction of
the shift.

Let us turn to the discussion of the chaotic motion in the perturbed system. As already
mentioned, the Lyapunov exponents have been computed to decide whether some set of
parameter values belongs to the chaotic regionSα or not. However, referring to the
dependence of the Lyapunov exponents versus the parameterγ1 for a fixed amplitude
0 = 0.01, one can observe just the same influence of the parametric perturbation.
Comparing figure 2 with figure 5, we notice that the shape of the dependence remains
qualitatively almost the same and a certain shift of the intervals of the periodic behaviour
(‘periodic windows’ which correspond to intervals with a negative maximum Lyapunov
exponent) towards lower values ofγ1 is observed (figure 5). As in the unperturbed system
intervals with orbits of different periods can be found.

According to our aim to study the suppression of chaos using a periodic parametric
perturbation, let us look at stable periodic motions which can be found within the chaotic
region in figure 5. The parameterα is again kept fixed atα = 0.85. Let us choose two
parameter valuesγ1 andγ2 which are separated by a value0 = 0.01 and which both have
to be elements ofSα in the unperturbed system (equations (8)). As an example, we take the
value γ1 = 0.269 14 andγ2 = 0.279 14 which fulfil the above suppositions (cf figure 2).
The iteration of system (11) with these parameter values yields a stable period-14 orbit
which corresponds to the first small periodic interval withγ1 > 0.26 seen in figure 5. To
make the comparison of the perturbed system with the unperturbed one easier, a small part
of figures 2 and 5 is presented in one graph (figure 6). Figure 6 shows that a stable periodic
motion can occur in the parametric excited system atγ1 = 0.269 14,0 = 0.01, although
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Figure 5. The maximum Lyapunov exponent versusγ1 for system (11) (α = 0.85, 0 = 0.01).

Figure 6. Enlargement from figures 2 and 5: thin full curve,0 = 0.01; bold broken curve,
0 = 0.

for the unperturbed system (0 = 0) the motion is chaotic (forγ = γ1 = 0.269 14 as well as
for γ = γ2 = 0.279 14). This numerical result demonstrates that chaos can be suppressed
by a parametric excitation with a certain amplitude even if the values for the excitation lie
in the chaotic parameter range.
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3.4. A possible mechanism for chaos suppression

The theory outlined in section 2 does not establish the mechanism for the appearance of a
stable periodic motion. This part is addressed to this question. The shift of the bifurcation
diagram, which has been discussed above, plays the key role in the stabilization of motion.
Not only the values of the bifurcations along the route to chaos are shifted but also the
structure of the chaotic parameter region itself changes under the influence of the periodic
perturbation. It is an important fact that the range of the investigated parameter values
contains a lot of intervals which correspond to windows of periodic behaviour of map (11)
as well as of map (8). This means that the chaotic and regular dynamics in maps (8) and
(11), respectively, are closely interwoven. It can be shown numerically that these intervals
with periodic behaviour in map (8) are shifted due to the parametric perturbation to other
parameter intervals. This shift depends on the amplitude of the excitation.

To investigate the relation between the periodic intervals in the unperturbed and the
perturbed system in more detail, the appearance and disappearance of the periodic motion is
studied. It is known that periodic orbits in windows occur due to a saddle-node bifurcation.
Due to the variation of the parameter value this periodic orbit undergoes a period-doubling
cascade and ends up in chaos again resulting in the disappearance of the periodic behaviour.
Let us analyse the bifurcation structure of the periodic orbit observed in the perturbed system.
For this purpose we consider the arising period-14 orbit found atα = 0.85, γ1 = 0.269 14,
γ2 = 0.279 14 depending on the amplitude0. One can see from figure 7 that there is
only a small interval of amplitudes where this stable period-14 orbit exists. This interval is

Figure 7. Stability of the period-14 orbit depending on the amplitude of the parametric
perturbation0 (α = 0.85,γ1 = 0.269 14): bold full curve, stable period-14 cycle; thin full curve
and thin dotted line, unstable period-14 cycle; bold broken curve, stable period-28 cycle; thin
broken curve, unstable period-28 cycle; star, saddle-node bifurcation for period-14 orbit (‘birth’
of the stable period-14 orbit); triangle, period doubling period-14 to period-28; diamond, period
doubling period-28 to period-56. All other periodic orbits with period-56 and higher have not
been continued and are, therefore, omitted.
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bounded on one side by a saddle-node bifurcation. This bifurcation occurs at an amplitude
of 0 = 0c = 0.009 961, when the stable and unstable period-14 orbits merge and disappear.
For the lower values of0, 0 < 0c, up to0 = 0 (γ2 = γ1), i.e. for the unperturbed system,
the period-14 orbit does not exist for the givenα = 0.85 andγ1 = γ2 = 0.269 14. With
increasing amplitude a period-doubling cascade, which ends up in chaos again, is observed.
This transition to chaos is the second boundary of the stable periodic motion in the perturbed
system.

Let us turn to the question whether this stable periodic orbit is somewhat connected to
the orbits occurring in the unperturbed system. For this purpose it is sufficient to show that
the point of ‘birth’ of the stable periodic orbit (in our case the saddle-node bifurcation in
figure 7) can be continued to0 = 0 by variation ofγ1 for fixed α. If such a continuation is
possible then the periodic window in the perturbed system is related to a periodic window
of the same period in the unperturbed system. Using path-following methods [25] we find
the appearance of the period-14 window in the unperturbed system. The possibility of
such a continuation illustrates again the shift of the periodic window. In our example the
saddle-node bifurcation of the period-14 orbit for0 = 0 can be observed atγ1

∼= 0.2745.
Therefore, one should find at this value ofγ1 a periodic behaviour in the unperturbed
system. To this end we refer to the graph of the maximum Lyapunov exponents (figure 6),
where the saddle-node bifurcation corresponds approximately to this value ofγ1 where the
periodic window arises; this means that the maximum Lyapunov exponent crosses the zero
line towards negative values. Indeed, one can recognize in figure 6 this ‘birth’ of the stable
period-14 orbit for both systems: atγ1 ≈ 0.2691 and0 = 0.01 (thin full curve) for the
perturbed system and atγ1 ≈ 0.274 and0 = 0 (bold broken curve) for the unperturbed one.
Hence, the parameter value for the appearance of the period-14 window obtained from the
continuation of the saddle-node bifurcation coincides with the results from the computation
of the maximum Lyapunov exponent.

4. Conclusion

We discuss here two-dimensional maps with chaotic behaviour and the possibility of chaos
suppression by means of parametric perturbations. From the analytical approach we can
make the following useful inference. If we perturb a chaotic map by means of ak-
cyclic parametric transformation then one can separate the obtained perturbed map into
k independent maps (except for the initial conditions). These can be constructed from
the initial (unperturbed) map with the help of sequential permutation (7). In addition, it is
sufficient to consider only one ofk independent maps to determine the type of the dynamics
of the whole perturbed map. This fact can essentially simplify the investigations of the maps
under parametric perturbations. Thus, the theoretical considerations give, in principle, a key
to the analytical study of the problem of chaos suppression for periodically excited chaotic
maps and allows one to find the necessary parameter values at which the chaotic behaviour
can be stabilized. Moreover, these parameter values have some (small) neighbourhood in
which the behaviour remains stable. In other words, in a physical experiment this regular
dynamics should be observable and should not be destroyed due to different kinds of small
enough external noise which smear the required parameter values.

Another conclusion which follows from the performed analysis concerns functionally
coupled maps with chaotic dynamics. If we construct a composition ofk identical maps and
each of them exhibits chaotic properties, then the resulting chain of coupled maps can have
regular behaviour. Therefore, in a certain sense the deterministic chaos can be suppressed
by means of the deterministic chaos.
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In turn, as numerical investigations have shown, the induced regular behaviour may be
apparently explained as a shift in the bifurcation diagram of the unperturbed system. Within
the chaotic region the parametric excitation leads to stable periodic motions due to a shift
of periodic windows. We would like to emphasize that the chosen parameter values which
have to be elements ofSα are always in some neighbourhood of a periodic window, since
the windows are closely interwoven with areas of chaotic dynamics. Therefore, the shift
of the windows due to the parametric excitation pushes the system into a periodic motion
in such a window. This can be regarded as the main mechanism leading to stable periodic
motions using parametric excitation within the chaotic region.

This allows us to suppose that the control of chaotic behaviour without feedback for
systems with such types of windows can be transformed into a goal-oriented method where
a periodic orbit chosen in advance can be stabilized. In a practical approach for a specific
model system one has first to choose a periodic window in the unperturbed system. In
the next step one has to determine the necessary amplitude of the perturbation using path-
following methods for the continuation of the saddle-node bifurcation, the ‘birth’, of the
desired periodic orbit. Knowing the amplitude of the parametric perturbation, one can
stabilize the chaotic behaviour and turn the motion into the desired periodic one. However,
it is important to note that for such a goal-oriented non-feedback control it is necessary to
have an explicit model for the system in the form of equations to perform the numerical
calculations needed for the determination of the appropriate amplitude of the parametric
perturbation. It is an open question as to how to generalize this method to systems which
are given only by measurements, and it needs further investigation. However, due to the
small width of most of the periodic windows one may find only the largest ones numerically.
At least further analytical investigation should clarify this problem.
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[8] Jackson E A and Ḧubler A 1990Physica44D 407–20
[9] Braiman Y and Goldhirsch I 1991Phys. Rev. Lett.66 2545–8

[10] Dykman G I, Landa P S and Neymark Yu I 1991Chaos, Solitons and Fractals1 339–53
[11] Alekseev V V and Loskutov A Yu 1985Moscow Univ. Phys. Bull.40 46–9
[12] Lima R and Pettini M 1990Phys. Rev.A 41 726–33
[13] Pettini M 1990Lecture Notes in Physicsvol 355 (Berlin: Springer) pp 242–50
[14] Fronzoni L, Geocondo M and Pettini M 1991Phys. Rev.A 43 6483–7
[15] Loskutov A Yu 1993J. Phys. A: Math. Gen.26 4581–94
[16] Loskutov A Yu and Shishmarev A I 1993 Usp. Mat. Nauk48 169–70 (in Russian)
[17] Loskutov A Yu and Shishmarev A I 1994 Chaos4 391–5
[18] Mora L and Viana M 1993Acta Math.171 1–71
[19] Devaney R L 1987An Introduction to Chaotic Dynamical Systems(New York: Addison-Wesley)
[20] Sinai Ya G (ed) 1989Dynamical Systemsvol II (Berlin: Springer)
[21] Lasota A and Mackey M C 1994 Chaos, Fractals, and Noise. Stochastic Aspects of Dynamics(Berlin:

Springer)
[22] Loskutov A Yu and Rybalko S D 1994 Parametric perturbations and suppression of chaos inn-dimensional

mapsPreprint ICTP No IC/94/347, Trieste, Italy, November 1994
[23] Anishchenko V S 1990Complicated Oscillations in Simple Systems(Moscow: Nauka) (in Russian)
[24] Anishchenko V S and Safonova M A 1987Radiotehn. Elektron.32 1207–16 (in Russian)
[25] Feudel U and Jansen W 1992Int. J. Bif. Chaos2 773–94


